#!/usr/bin/env python3 import numpy as np import geopandas as gpd from scipy.cluster.hierarchy import fcluster, linkage from shapely.geometry import Point from shapely.ops import nearest_points def exclude_outliers(data): """Exclude outliers using the IQR method.""" if len(data) == 0: return np.array([], dtype=bool) Q1 = np.percentile(data, 25, axis=0) Q3 = np.percentile(data, 75, axis=0) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR return (data >= lower_bound) & (data <= upper_bound) def find_median_center(cluster_points): """Find the median center of a cluster, excluding outliers.""" if len(cluster_points) == 0: return None, None outlier_mask = exclude_outliers(cluster_points) filtered_points = cluster_points[np.all(outlier_mask, axis=1)] median_x = np.median(filtered_points[:, 0]) median_y = np.median(filtered_points[:, 1]) return median_x, median_y def snap_to_nearest_node(median_center, nodes): """Snap median center to the closest node where 'type' does not equal 'HP'.""" # Filter nodes to exclude those with type 'HP' eligible_nodes = nodes[nodes['type'] != 'HP'] # Find the nearest eligible node closest_node = eligible_nodes.geometry.unary_union closest_point = nearest_points(median_center, closest_node)[1] # Get the ID of the closest node closest_node_id = eligible_nodes.loc[eligible_nodes.geometry == closest_point, 'id'].values[0] return closest_point, closest_node_id def cluster_homes_and_save(shapefile_path, nodes_path='nodes.shp', home_points_path='home_points.shp', fdh_path='fdh.shp', max_homes_per_cluster=432): homes = gpd.read_file(shapefile_path) nodes = gpd.read_file(nodes_path) coordinates = np.array(list(homes.geometry.apply(lambda x: (x.x, x.y)))) Z = linkage(coordinates, method='ward') max_distance = Z[-1, 2] distance_threshold = max_distance / 2 clusters = fcluster(Z, t=distance_threshold, criterion='distance') while np.max(np.bincount(clusters)) > max_homes_per_cluster and distance_threshold > 0: distance_threshold *= 0.95 clusters = fcluster(Z, t=distance_threshold, criterion='distance') if distance_threshold <= 0: print("Unable to find a suitable distance threshold to meet the cluster size constraint.") return homes['fdh_id'] = clusters homes.to_file(home_points_path, driver='ESRI Shapefile') print(f"Clustered homes saved to {home_points_path}") median_centers = [] for cluster_id in np.unique(homes['fdh_id']): cluster_points = np.array(list(homes.loc[homes['fdh_id'] == cluster_id, 'geometry'].apply(lambda p: (p.x, p.y)))) median_x, median_y = find_median_center(cluster_points) if median_x is not None and median_y is not None: median_center = Point(median_x, median_y) snapped_center, node_id = snap_to_nearest_node(median_center, nodes) median_centers.append({ 'geometry': snapped_center, 'id': cluster_id, 'node_id': node_id }) median_centers_gdf = gpd.GeoDataFrame(median_centers, columns=['geometry', 'id', 'node_id'], crs=homes.crs) median_centers_gdf.to_file(fdh_path, driver='ESRI Shapefile') print(f"Median centers saved to {fdh_path}") # Adjust the call to cluster_homes_and_save as needed cluster_homes_and_save('home_points.shp')