#!/usr/bin/env python3 import geopandas as gpd import networkx as nx import time print("Building the graph...") # Load shapefiles edges_gdf = gpd.read_file('edges.shp') nodes_gdf = gpd.read_file('nodes.shp') home_points_gdf = gpd.read_file('home_points.shp') fdh_gdf = gpd.read_file('fdh.shp') # Build the graph G = nx.Graph() for _, edge in edges_gdf.iterrows(): G.add_edge(edge['start_node'], edge['end_node'], weight=edge['cost'], type=edge['type'], length=edge['length'], cost=edge['cost']) # Create a mapping from fdh_id to node_id for quick lookup fdh_to_node = fdh_gdf.set_index('id')['node_id'].to_dict() # Identify home nodes home_nodes = set(home_points_gdf['drop_point'].dropna()) # Store the edges connected to home nodes for re-adding later home_node_edges = {} for node in home_nodes: home_node_edges[node] = list(G.edges(node, data=True)) # Create a new graph to store paths home_graph = nx.Graph() total = len(home_points_gdf) counter = 0 # Start the timer start_time = time.time() # Temporary copy of G to modify for each pathfinding operation, excluding home nodes initially G_temp = G.copy() G_temp.remove_nodes_from(home_nodes) # Find the minimum cost path from each home node to its associated FDH node for _, home_point in home_points_gdf.iterrows(): start_node = home_point['drop_point'] fdh_id = home_point['fdh_id'] if fdh_id in fdh_to_node and start_node in home_node_edges: target_node = fdh_to_node[fdh_id] # Lookup the target_node using fdh_id # Temporarily add the start node and its edges back to G_temp for pathfinding G_temp.add_node(start_node) G_temp.add_edges_from(home_node_edges[start_node]) try: if G_temp.has_node(target_node): # Ensure the target FDH node exists in the graph path = nx.shortest_path(G_temp, start_node, target_node, weight='cost') for i in range(len(path) - 1): #home_graph.add_edge(path[i], path[i+1], weight=G[path[i]][path[i+1]]['cost']) # Include fdh_id as an edge attribute home_graph.add_edge(path[i], path[i+1], weight=G[path[i]][path[i+1]]['cost'], fdh_id=fdh_id) except nx.NetworkXNoPath: print(f"No path found from home node {start_node} to FDH node {target_node}.") finally: # Remove the start node again to reset G_temp for the next iteration G_temp.remove_node(start_node) counter += 1 print(f'Progress: {counter}/{total}', end='\r') # Stop the timer and print the elapsed time end_time = time.time() elapsed_time = end_time - start_time print(f"\nGraph complete in {elapsed_time:.2f} seconds.") print("Saving the network...") # Extract edges data from the home_graph to create a GeoDataFrame network_data = [] edge_counter = 0 total_edges = len(home_graph.edges(data=True)) for edge in home_graph.edges(data=True): start_node, end_node, edge_attrs = edge edge_data = edges_gdf[((edges_gdf['start_node'] == start_node) & (edges_gdf['end_node'] == end_node)) | ((edges_gdf['start_node'] == end_node) & (edges_gdf['end_node'] == start_node))] if not edge_data.empty: fdh_id = edge_attrs['fdh_id'] edge_geom = edge_data.iloc[0]['geometry'] network_data.append({ 'geometry': edge_geom, 'type': edge_data.iloc[0]['type'], 'length': edge_data.iloc[0]['length'], 'cost': edge_data.iloc[0]['cost'], 'fdh_id': fdh_id }) # Update the progress indicator edge_counter += 1 print(f'Processing edge {edge_counter}/{total_edges}', end='\r') network_gdf = gpd.GeoDataFrame(network_data, crs=edges_gdf.crs) network_gdf.to_file('network.shp') print("\nDone.")